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1. INTRODUCTION

We consider a general parametric optimization problem of the form

min f(x,c) s.t. x e R(E) P(E)

where f: E x Ek ) E1  and R is a point-to-set map from Ek to En

as well as several specializations of this problem. Our primary inter-

est is the characterization of convexity and concavity properties of the

optimal value function f* of the problem P(e) (sometimes called the

perturbation function or the marginal function), defined as

, infx  {f(x,e) I x e R(e)} , if R(C) #
-, if R(C) mO

Sufficient conditions for several types of convexity and concavity

of f* , such as standard, strict, polyhedral, uniform, and homogeneous,

are given in terms of assumptions on f and the feasible set map R

5
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Surprisingly, most of the results seem to be new, despite the common

character of these notions. Convexity properties of the solution point-

to-set map S* defined by

s*(e) - {x E R(E) I f(x,e) = f*(e)}

are also briefly considered.

Convexity, concavity, and other fundamental properties of the opti-

mal value function f* and the solution set map S* , such as continuity,

differentiability, and so forth, form a theoretical basis for sensitivity,

stability, and parametric analysis in nonlinear optimization. Consequently,

interest in such properties and their applications has always bien mani-

fest [e.g., see Berge (1963) and Rockafellar (1970)]. Developments in

this general area have been intensive during the past decade and there

have been considerable current efforts to provide a unified body of theory

and methodology. This is evidenced in particular by the recent emergence

of several monographs, by Rockafellar (1974), Brosowski (1982), Bank, et

al. (1982), and Fiacco (1983).

However, despite these important advances and the fact that a few

results concerning convexity and concavity of f* have been known for

some time, there does not appear to be any comprehensive or systematic

treatment of these properties in the literature. This paper endeavors

to provide this much-needed treatment, collecting important known results

and presenting many new results in a unified manner. Readers less familiar

with the various (generalized) notions of convexity and concavity utilized

here may consult the books by Mangasarian (1969) and Ortega and Rhein-

boldt (1970), or a recent survey by Avriel, et al. (1981) and the refer-

ences contained therein.

2
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We now specify several programs studied in this paper. Along with

problem P(E), we shall also consider a less general parametric optimiza-

tion problem,

min f(x) s.t. x C R(E) P'(e)
x

By specializing the feasible set (constraint set) map R of P(E), we

obtain the parametric nonlinear prograimming (NLP) problem,

min f(x,e) s.t. gi(x,e) 0 , i =1...m
,'xEM P3(C)

x. h (xE) = 0 , j = 1...,p

n  n k 1 n k 1

where MCE , gi:E x E- , i -1,...,m h:E x E E

j l, ..,p , i.e., with R defined by

R(e) - {x E M I gi(x,E) > 0, i = 1,...,m, h (x,e) = 0, j 1,...,p}

We may further specialize P3 () to the general right-hand-side (grhs)

NLP problem,

min f(x,E) s.t. giW ' i = 1 ..,m
xeM P2(e)hj(x) m+j j J ,...,p

i.e., with R defined by

R(e) - {x e M gi(x) i l,. ..,m, h i(x) e M+j j

Note that P2( ) differs from the standard rhs NLP problem for which

f(x,C) - f(x) . Finally, we also consider a problem of the form

min f(x,e) s.t. x £ M PI(C)
x

In the sequel several notions from convex analysis and the theory

of point-to-set maps will be frequently used. We define them here for

completeness. The set M C Er is a convex set if for any x1 ,x2 C M

and X c [0,1] , Ax1 + (1-A)x 2 £ M . The convex hull of a set AC Er

I * -3-
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is the set conv(A) - {x1 + (l-X)x 12 XX 2 e A, A [0,1]1 . The set

K CEr is a cone if x e K implies x e K for all > 0 ,and K

is a convex cone if it is also convex, i.e., if x 1 + M2 C K for all

XlX2 e K and X,u > 0 . A point-to-set map R: Ek - En  assigns a

subset of En (possibly empty) to each element of Ek . The domain of

R is the set domR - {e C Ek I R(e) #01. The graph G of R is

defined by G(R) = {(E,x) I x e R(e)} . Also, we define the range of R

kover A by R(A) V R() for any set A C E
EA

For these and other notions of linear algebra and convex analysis,

and topology and point-to-set map theory, the reader is referred to the

books by Rockafellar (1970) and Berge (1963), respectively.

Several immediate extensions and applications of the results

given here are noted. Firstly, most of the results remain valid in more

general spaces, e.g., real vector, real vector topological, or Banach

spaces. Secondly, the results for P(e) and P'(e) are applicable to ri-

ous problems of abstract optimal control theory, mathematical economics,

etc. Thirdly, many specific problems of nonlinear programming, e.g.,

geometric programming, separable programming, fractional programming,

etc. often possess structures that enable one to apply many of the results

given here. Finally, it is possible to obtain many other results on gen-

eralized convexity and concavity properties of the optimal value function

f* . This will be the topic of the forthcoming paper.

Applications of some of the results given here to the construc-

tion of simple upper and lower bounds on f* in parametric nonlinear and

geometric prograuming have been given in Fiacco (1983) and Kyparisis (1982).

(A first such application was probably the well known sensitivity result

of Everett (1963) for rhs convex programing problems.)

I4
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A number of related recent results are not studied here, e.g.,

interesting results on paraconvex point-to-set maps [see Rolewicz (1979,

1980,1981)] and results concerning (global) Lipschitz continuity of f*

[see, e.g., Stern and Topkis (1976), Dolecki (1977,1978), and Robinson

(1981)]. Also, some extensions to multiobjective optimization were

obtained by Tanino and Sawaragi (1979,1980).

2. CONVEXITY OF THE OPTIMAL VALUE FUNCTION

An (extended) function 0: Er -E 1 V {-.w,c} is called "convex"

on a convex set MCE [see, e.g., Rockfellar (1970)], if the epi-

graph set of f on M , {(xr) I x E M, r > f(x)} is convex, or

equivalently if for all xlx 2 c M and A (0,1),

OCXx1 + (l-x)x2) ' X(x I) + (l-X)0(x2 )

(where we adopt the convention that (--w) + o = c ). The following

notion is well known.

The point-to-set map R: Ek - En  is called "convex on a

convex set S Z Ek  if the set G(R) f% (S x E n) is convex, or

equivalently if, for all £I, 2 c S and X e (0,1)

XR(c1 1 + (1-X)R(E2 ) C RCXe + (l-X)e 2 ) .

[For a more general notion of a "B-convex" point-to-set map, see Borwein

(1977) and Tanino and Sawaragi (1979).] We introduce a slight extension

k n ,of the previous notion and call R: E k o E essentially convex" on a

kconvex set S C E if, for all l,C2 € S 1 £2 and X £ (0,1) ,

XR(e1) + (1-X)R( 2)C 1 + (l-X)£ 2)

It is clear that if R is convex on S , then it is essentially convex

-5-
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on S . A convex map R on S is also convex-valued on S , i.e., its

"value" R(e) at C E S is a convex set. However, an essentially con-

vex map may not be convex-valued at the boundary points of S , as shown

below.

Example 2.1

Consider R: E 2 E1  defined by

[0,1] if e2 + E 2 <
1 2<
2 2

R(Ip2 ={0} V {i} if E + >1
2 1 c2  1

if E 2 +E2>I
1 2

and S = +() c 2 + 2 <1 . If is easy to check that R is
l'e2 E1 2

essentially convex on S but R(E,E 2 ) is not convex if E1 2 = 1

Proposition 2.2

Consider the general parametric optimization problem P(c). If f

is jointly convex on the set {(x,c) I x e R(c), e c S} , R is essen-

tially convex or convex on S and S is convex, then f* is convex

on S

Proof: Let 1, 2 e S, , and X c (0,1) Then by convexity

of f and essential convexity of R , we obtain

f*CAX + (l-A)F2) - inf fCx, AEI + (1-X)6 2)
xcR(X 1 +(l-x)c 2)

4 inf fCkx 1 + (I-X)x2 0 1+ (l-x)c 2)
Xl1 R(c 1)

x 2eR (C2)

• inf [Xf(xl,E) + (l-X)f(x2,C2)]
Xl-R( I

x e.R(e 2

2 2

, __ _ 6
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- X inf f(xle I) + (i-X) inf f(x2,E2)
x1cR( I) x2eR(c2)

= Xf*(El) + (l-X)f*( 2 )

i.e., f* is convex on S N

The above result is quite well known when R is convex and often

appears in a different but essentially equivalent form: if f: En x Ek -

E1 V {-0,o} is a jointly convex function (also called a bifunction),

then f* given by f*(e) - inf {f(x,e) I x e E n} is convex [Rockafellar

(1970, Thm. 29.1; 1974)]. If we assume that f > - on En X Ek and

define the point-to-set map R0  by R0 (E) - ix E n I f(x,e) < +.}

then the problems

min f(x,E) s.t. x C En P0(C)
x

and

min f(x,E) s.t. x e R0(c) P(E)
x

are equivalent. We prefer the latter form of the general problem since

it allows us to treat the constraints explicitly. Also, in the case of

essentially convex R , an equivalent problem P0(C) will not necessarily

have jointly convex , where we define

-f(xE) , if (c,x) c G(R)

(4-+ , if (e,x) I G(R)

Another extension of the notion of a convex point-to-set map is

introduced next. We call R: Ek - En a "closure convex" point-to-set

map on a convex set S CE k  if, for all £lC2 e S and X c (0,1)

XR(e I ) 1+ (l-X)R(C2) Cc1tR(XC1 + (l-X)c2))

7
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where ck(A) denotes the topological closure of the set A We ob-

serve that R is closure convex on S if and only if the map c£R

given by ckR(e) = ckCR(e)J is convex on S (this follows from the

fact that c£(A) + c£(B) Cct(A+B) for arbitrary sets A and B ).

Also, if R is convex on S , then it is closure convex on S , but

not conversely, as shown in the next example.

Example 2.3

Consider R: E1 - E1 defined by

(Ol) , if lei < I

R(e) = [0,11 , if Iei = I

10 , if leit > 1

and S = {E I lEt < 1} . It is easily seen that R is closure convex

but not convex on S (note that R is convex-valued on S ). Similar-

ly, we call R "essentially closure convex" on a convex set S if cIR

is essentially convex on S.

Proposition 2.4

Consider the general parametric optimization problem P(C). If f

is jointly convex on the set {(x,e) I x e c<CR(e)), e c S} and upper

semicontinuous in x on the set cZCR(S)) for every e e S , R is

essentially closure convex or closure convex on S and S is convex,

then f* is convex on S

Proof: Define R(e) = cXCR(E)) for e e S and denote ?*(e) -

infx{f(xe) I x e R(c)} . By Proposition 2.2 ?* is convex on S

since R is essentially convex on S . We now show that f*(c) f*fc)

for e e S . Obviously, f*(c) > f*(c) for ec S . Let {x n R(E)

e E S , be such that f*(e) = limn f(x ,nc) (such a sequence exists by

-8-
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definition of infimum). Then for every n there exists a sequence

{x im} C R(e) such that xn - limm_X xnm . Thus by upper semicontinuity

of f ,

f(x n,) - fflim xm, C) lim sup f(xnm,£) > f*(),

which implies that f*(e) > f*(e) , c e S .

Remark 2.5

In the above proof we have shown that if f is upper semicontin-

uous in x and R(e) is an arbitrary set, then

f*(E) = inf f(x,E) = inf f(x,£) = f*(e)
xEck(R()) xCR(£)

In the following we consider specializations of Proposition 2.2

to problems P3(e) and P2 (e) [several other specializations are given in

Rockafellar (1974)]. In order to state sufficient conditions for the

convexity of R and f* for the parametric NLP problem P3 (e), we need

the following definitions. A function 0: Er ) E1 V {-,-} is called

"quasiconvex" on a convex set M C Er [Fenchel (1953)] if the level

sets Lc - {x e M I 4(x) O c) are convex for all c e EI V {- ,} , or

equivalently, if for all x1,x2 e M and X e (0,1)

OCXx + (l-X)x2  max{(Xl),

A convex function on a convex set M is also quasiconvex on M

A function 0: Er -o E1 V {-o,-} is called "quasiconcave" on a

rconvex set M CE [Fenchel (1953)] if -0 is quasiconvex on M , i.e.,

if the level sets Uc - {x e M *(x) 0 c} are convex for all c £ E I1 V

9
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The function * is called "quasimonotonic" on a convex set

M e Er [Martos (1967)] if * is both quasiconvex and quasiconcave on

M , i.e., if the sets E {x C M I 4(x) c} are convex for allc

c e E1 V {-,-} . If is affine on M , then clearly it is also

quasimonotonic on M

Proposition 2.6

Consider the parametric NLP problem P3(e). If {gi} are jointly

quasiconcave on M x S , {hj} are jointly quasimonotonic on M x S

and M and S are convex sets, then R given by R(e) -

{x E M gi(x,E) ; 0, i = 1 ...,m, h (x,£) - 0, j = ,.... ,p} is convex

on S

Proof: Consider

G(R) A (S x En) {(e,x) E S x M gi(x,e) 0 0, i 1 1,...,m}

A {(E,x) E S x M hj(x,') O, j =,.. .,p}

By quasiconcavity of {gi} and quasimonotonicity of {h.} on M x S

this set is convex, implying convexity of R on S .

The following result is now immediate.

Corollary 2.7

Consider the parametric NLP problem P3 (e). If f is jointly

convex on M x S , {g} are jointly quasiconcave on M x S , {hj}

are jointly quasimonotonic on M x S , and M and S are convex, then

f* is convex on S.

Proof: This follows directly from Propositions 2.2 and 2.6.

-10 -
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Corollary 2.7 generalizes the result of Mangasarian and Rosen

(1964), who assumed joint concavity (see the definition following) of

{gi } to obtain convexity of f* (for the problem with inequality con-

straints only).

A function 0: Er - E1 V {-,-} is called "concave" on a convex

set M C Er  [see, e.g., Rockafellar (1970)].if -0 is convex on M

(see also Section 3 for this definition). It is called "affine" on M

if it is finite and both convex and concave on M (see also Section 4

for this definition).

Proposition 2.8

Consider the grhs parametric NLP problem P2 (E). If {gi} are

concave on M , h are affine on M and M is convex, then R

given by R(e) {x e M I gi(x) ;0i i 1... ,m, h(x) - mJ

j l, ...,p} is convex.

Proof: This result follows directly from Proposition 2.6, since

gi(x,e) - gix) - Ei is jointly quasiconcave and i(xe) - h(x) -

is jointly quasimonotonic on M x Ek  (k - m+p) under the above assump-

tions. U

Note that quasiconcavity of {gi} in Proposition 2.8 is not

sufficient for the result to hold. To see this, consider the problem

min x , s.t. e ; £ (x e E , C > 0) . Obviously, e is quasicon-

cave but f*() - n(e) is not convex.

Corollary 2.9

Consider the grhs parametric NLP problem P2 (c). If f is jointly

convex on M x S , {giI are concave on M , (hi are affine on ,

- 11 -
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and M and S are convex, then f* is convex on S .

Proof: Follows immediately from Propositions 2.2 and 2.8. U

The above result is very well known for the standard rhs NLP

problem, i.e., when f(x,e) - f(x) [see, e.g., Rockafellar (1970, Thm.

29.1), Luenberger (1969, §8.3), and Geoffrion (1971)]. Note that for

PI(C), joint convexity of f on M x S and convexity of M and S

imply convexity of f* on S (since if M is convex, then R defined

by R(c) - M , e e S , is convex on S ).

We introduce still another extension of the notion of a convex

k npoint-to-set map next. We call R: E -) E a hull convex" ("essentially

khull convex") point-to-set map on a convex set S C E if the map

convR given by convR(C) - conv(R(E)) is convex (essentially convex) on

S , or equivalently, if for all Ci, 2 E S (El # E2 ) and X e (0,I)

Xconv(R(Cl)) + (l-X)convCR(c2)) C convCR(XE1 + (I-X)E2))

Since for all €le 2  S and X e (0,1)

Xconv(R( 1 )) + (l-X)conv(R(c2)) - conv(XR(e1 ) + (1-X)R(.2))

we can use the condition

XR(eI) + (I-X)R(c2) C convCR(Xc 1 + (I-X)C2))

in the above definition. If R is convex on a convex set S , then R

is hull convex on S but not vice versa. For example, if M is not

convex, then R given by R(e) - M , C C S , is hull convex but not

convex on S . These two notions coincide if R is convex-valued; thus

a hull convex R is not necessarily convex-valued. The next result

partially generalizes Proposition 2.2 (see also Proposition 3.4 and

Remark 3.5).

-12-
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Proposition 2.10

Consider the general parametric optimization problem P(e). If f

is jointly convex on the set {(x,E) I x e R(e), E C S} and quasicon-

cave in x on En  for every e e S , R is essentially hull convex or

hull convex on S , and S is a convex set, then f* is convex on S

Proof: Define i(c) - convCR()) for E e S Denote f*(E) -

infx{f(x,e) I x C R(e)} . By Proposition 2.2 * is convex on S

since R is convex on S . We show that actually f*(c) - ?*() for

E e S . Clearly, f*(e) N *(c) , e E S . Suppose that e C S and

x e R(*) . Then x - Ax I + (l-X)x2  for some xlX 2 e R(E) and X E

(0,1) . By quasiconcavity of f

f(x,e) fClx1 + (l-X)x 2,e ) min{f(xl,e), f(x2,C)}

inf f(x,C) = f*(C)

xER(C)

This shows that *(e) > f*(e) .

The notion of hull convexity can also be used to extend the defi-

nitions of polyhedral and homogeneous convex maps and maps convex at a

point (all of which are given later in this section) and the correspond-

ing results concerning f* can be similarly partially extended.

We shall now restrict the usual notions of convexity as follows.

We call a set M C Er "convex at x0 e M " (also called "star-shaped at

x0 ") if, for any x e M and X c (0,1) , Ax0 + (l-X)x e M . A func-

r 1 f
tion 0: E * E {-cpwE is called "convex at x0  ("concave at x0 ")

on a set M C Er convex at x0  if, for all x c M and X c (0,1)

OCXxo + (1-X)x) () xo(x0 ) + (l-A)X(x)

* -13 -
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[see Mangasarian (1969) for a slightly more general definition, without

assuming convexity of M at x0 1.

We call "affine at x0  on M convex at x 0  if it is

finite and both convex and concave at x 0 on M . We now extend the

k n ,t
notion of a convex map and call R: E -* E convex at c " on a set

S convex at C0  if G(R) A (S x En) is convex at (x,E0 ) for all

x C R(E0) , or equivalently, if for all C E S and X E (0,1)

XR(e0 ) + (l-X)R(C) c RCXE 0 + (1-X)C)

Furthermore, we call R "essentially convex at C0 " on S convex at

C0  if the above inclusion holds for all C C S , C E 0 and A C (0,1)

This latter definition is slightly more general and allows for noncon-

vexity of R(C0 ) . We state two results whose proofs parallel those of

Proposition 2.2 and Corollary 2.7 and are therefore not given.

Proposition 2.11

Consider the general parametric optimization problem P(E). If

f is jointly convex at (x,c0) for all x e R(c0) on En x S , R

is essentially convex or convex at E0 on S and S is convex at

C0 , then f* is convex at e0 on S.

Proposition 2.12

Consider the parametric NLP problem P3 (c). If f is jointly

convex at (x,c0) for all x C R(C0) on M x S {gi } are jointly

concave at (x,) for all x C R(e0) on M x S , {hi} are jointly

affine at (x,e0) for all x £ R(E0 ) on M x S , M is convex and

S is convex at C0 9 then f* is convex at C0 on S

- 14 -
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A function *: Er E1 V {-co} is called "strictly convex" on a

convex set M C Er (see, e.g., Rockafellar (1970)] if, for all x1 ,x 2 E

M , x1 # x2 and X e (0,1) ,

OCXxl + (l-X)x2) < XO(x I ) + (l-X)O(x2 )

Proposition 2.13

Consider the general parametric optimization problem P(e). If

f is jointly strictly convex on the set {(x,c) I x E R(E), E E S}

R is essentially convex or convex on S , S is convex and S*(£)

for all e e S (i.e., there exist solutions to P(e) for all E C S ),

then f* is strictly convex on S

Proof: Let el,£2 E S , 1 # E2 , and X e (0,1) . Denote eA =

X I + (l-X)£2 . By our assumptions there exist x* e S*(E I ) and
1 2*1 1s

X2 E S*(E2) , so by strict convexity of f and essential convexity or

convexity of R we obtain
Xf*( l) + (1-X)f*(£2) = Xf(x*,£ l ) + (1-X)f(x*, 2

> fCXx* + (1-X)xl,cx

inf fc(x I + (l-X)x 2 ,EX)
xIER(CI)  12

x2 CR(£2)

inf f(x,£) - f*(C)
xER(E X

i.e., f* is strictly convex on S.

For the NLP problem P () we obtain the following result. A
3

similar result can be stated for P2(c).

-15-
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Proposition 2.14

Consider the parametric NLP problem P3 (C). If f is jointly

strictly convex on M x S , {gi} are jointly quasiconcave on M x S

{hi} are jointly quasimonotonic on M x S , M and S are convex, and

S*(e) 0 for all e e S , then f* is strictly convex on S

Proof: Follows from Propositions 2.13 and 2.6 combined. M

Proposition 2.13 is not applicable if f(x,E) - f(x) for the

problem P'(e), but we can state another result that does apply to this

problem.

Proposition 2.15

Consider the parametric optimization problem P'(e). If f is

strictly :onvex on the set R(S) , R is convex on S , S is convex,

S*(C) # * for all c e S , and S*(E I) # S*(e 2) if Ele 2 E S

e1 # E2 ,then f* is strictly convex on S

Proof: Let ele 2 E S , 1 0 E2 and C £ (0,1) . By our assumptions

there exist x E S*( 1  , e S*(E2) and x* x . Thus, by strict

convexity of f and convexity of R we have

Xf*(e) + (1-A)f*(E2) - Xf(x*) + (1-A)f(x*)

> fCXx* + (t-X)x*) ; inf f(Xx I + (1-X)X 23XIER(E )
1 1x2E:R(e 2 )

inf f(x) f*C 1X + (I-X)2
xcR(Xc 1+(I-X)c 2)  12

i.e., f* is strictly convex on S . U

- 16 -
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Remark 2.16

Note that in Propositions 2.13 - 2.15, the S*(E) are actually

singleton sets. Hence, the assumption that S*(c 1) 0 S*(E 2) in Propo-

sition 2.15 means that S* (treated as a single-valued map) is one-to-

one on S

Specialization of this result to the NLP problem P3(E) can be

easily obtained using Proposition 2.6.

Next, we consider the following strengthened notion of convexity.

We call 0: Er - E1 V {-,-} "uniformly convex with d(.) " on a

convex set M CE r  [see Ortega and Rheinboldt (1970) for a slightly

different definition] if, for all xl,x2 E M and X e (0,1) ,

OClx 1+ (l-X)x2) < Xo(x I ) + (1- )0'(x2) - X(l-X)d(11xl-x 2 11)

where d: [0,-) * [0,-) is an increasing function, with d(t) > 0 for

t > 0 and d(O) 0 , and 11'11 is an arbitrary norm in Er

Proposition 2.17

Consider the general parametric optimization problem P(c). If f

is jointly uniformly convex with d(') on the set {(x,e) I x e R(c),

E C S} , R is essentially convex or convex on S and S is a convex

set, then f* is uniformly convex with d(*) on S

Proof: Let e1,C2 e S , C 1 C2 and X e (0,1) . By our assumptions

and the properties of the function d and the norm, we obtain

fc x 1 + -1-Xc inf fCxXF1 + (1-X)2
fQ1 +(-) 2) - 1 (-c 2)xcR(.Xc +(l-X)E 2

4 inf fcx 1 + (l-x)x2, XcI + (I-A)c 2 )
x2 cR(g 1 )

-17-
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inf [Xf(x 1,I 1 ) + (l-X)f(x 2,E2) - X(l-X)d((xl 11 - (x2,e2) II)1XleR(e 1)

x2ER(E2 )

inf (f(xlc 1 ) + (l-X)f(x 2, 2) - A(l-A)dCII(x 1 -x 2 , E1 -e 2 )]]
xI1 R(C 1)

x2 CR(C 2 )

inf [f(xle 1 ) + (l-X)f(x 2 ,E 2 )] - X(l-X)d(C 1 -C 211)
xIeR(e1 )
x 2 R(C 2)

= X inf f(xl,E1 ) + (i-) inf f(x 2 , 2 ) - X(l-X)d(IlI-E 2 I)
Xl1 R(C )  x 2CR( 2 )

Xf*( 1) + (l-X)f*(c2 ) X(1-X)d(UI1 -e211)

i.e., f* is uniformly convex with d(') on S

Remark 2.18

Note that actually for the above result to hold, we need only

assume that, for any xl,x 2 E En , ElC 2 C S and X C (0,1) ,

fCIx 1+ (l-X)x 2, Xe1 + (l-X)c 2) 4 Xf(xl,e) + (1-X)f(x 2,C2)

- X(l-X)d(jel- 211)

This could be termed uniform convexity of f in C with joint convexity

in (x,E)

Another observation is that Proposition 2.17, for the parametric

optimization problem P'(£), reduces to Proposition 2.2, i.e., one ob-

tains only convexity of f* . Finally, in the standard definition of

2uniform convexity, one sets d(t) - yt , y > 0 [Pol'yak (1966), see

also Avriel, et al. (1981)] and the term "strong convexity" is used in

this case.

-18-
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Specializations of the above result to the parametric NLP problem

P 3() and the grhs parametric NLP problem P2(E) can be easily stated in

a manner similar to Corollaries 2.7 and 2.10. Moreover, one can define

the notion of uniform convexity at a point and prove a result similar

to that in Proposition 2.11.

A "convex polyhedron" in Er is any set of the form

{x e Er I Ax < b} ,where A is a s x r matrix and b e Es . A func-

tion 4: Er - E1 V {-=,-} is called "polyhedral convex" on a convex

Crpolyhedron M C E [see, e.g., Rockafellar (1970)] if the epigraph set

{(x,r) I x e M, r > O(x)} is a convex polyhedron. We call R: Ek - En

a "polyhedral convex" point-to-set map on a convex polyhedron S C Ek

[see, e.g., Rockafellar (1967) for a special case of this notion] if the

set G(R) A (S x En) is a convex polyhedron. A more general notion of

a "polyhedral" point-to-set map was given by Robinson (1981) (see Sec-

tion 4).

Proposition 2.19

Consider the general parametric optimization problem P(E). If f

is jointly polyhedral convex on the set {(x,c) I x e R(e), E E S}

R is polyhedral convex on S , and S is a convex polyhedron, then

f* is polyhedral convex on S

nx EnkX-Ek
Proof: Define ?: Ex E J {1 } by

(f(x,e), if x e R(c) and c c S

j , )otherwise.

n r
By our assumptions ? is polyhedral convex on E x E . Thus, by

Rockafellar (1970, Thm. 29.2), f*(E) - infx {(x,E) x e E n } is

polyhedral convex on S . U

- 19 -

L



T-471

A function 4: Er - E1 V {-ao} is called "polyhedral concave"

on a convex polyhedron M C Er if -4 is polyhedral convex on M

Proposition 2.19 can now be specialized to the problem P3(ce) as follows.

Proposition 2.20

Consider the parametric NLP problem P3 (e). If f is jointly

polyhedral convex on M x S , {gi } are jointly polyhedral concave

on M x S , {h.} are jointly affine on M x S , and M and S are

convex polyhedra, then f* is polyhedral convex on S

Proof: Consider G(R) A (S x En) {(E,x) E S x M I gi(x, E ) > 0,

i = i,...,m} A {(E,x) E S x M I h (xE) = 0, j = i .... m} . By our

assumptions this set is a convex polyhedron, hence R is polyhedral

convex on S . The result now follows from Proposition 2.19. U

A similar result can also be given for the grhs parametric NLP

program P2 (E) using Proposition 2.8.

Finally, we consider the notion of homogeneity and homogeneous

r 1convexity. We call 0: E - E V {--,w} a "positively homogeneous"

function on a cone K CE r  [see, e.g., Rockafellar (1970)] if O(Xx)

Xo(x) for all x E K and X > 0 . We call R: Ek _ En a "positively

homogeneous" point-to-set map on a cone K CE k  [see, e.g., Rockafellar

(1967)] if R(Xe) - XR(c) for all E e K and A > 0 , or equivalently,

if G(R) A (K x En) is a cone. Note that if 0 is positively homo-

geneous on K and 0 E K , then 0(0) -0 if 0(0) is finite. Also,

if R is positively homogeneous on K and 0 E K ,then 0 E R(0) if

R(O) is a nonempty closed set.

- 20 -
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Proposition 2.21

Consider the general parametric optimization problem P(e). If

f is jointly positively homogeneous on En x K , R is positively ho-

mogeneous on K , and K is a cone, then f* is positively homogeneous

on K .

Proof: Let X > 0 and e e K Then Xe e K and by our assumptions,

f*(Xe) = inf f(x,Xe) = inf f(Xx,Xe) - X inf f(x,e)
xcR(Xc) xeR(e) xeR(e)

= Xf*(c) • U

The following specialization to P3 (c) is immediate.

Proposition 2.22

Consider the parametric NLP problem P3(C). If ,gi } and

{h } are jointly positively homogeneous on M x K , and H and K

are cones, then f* is positively *mogeneova on K .

Proof: In view of Proposition 2.21 we need only prove that R is

nn
positively homogeneous on K , i.e., that G(R) (\ (K x En ) is a cone.

Let (E,x) e G(R) (\ (K x En) and X > 0 be arbitrary. Then gi(xe)

0 , i - l,...,m , h (xe) = 0 , j l.,...,p , where x C K , C C K

By the assumptions above, Xx C M , Xe £ K , and gi(Xx,Xe) = Xgi(xe)

0 ,i - 1,...,m , h (x,Xe) Xh(xe) - 0 j - 1,...,p , implying

that X(c,x) e G(R) A (K x En)

Further specialization to P2(c) is obvious. The next, more special

result applies in particular to P (E).

- 21 -
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Proposition 2.23

Consider again the general problem P(E). If f is positively

n
homogeneous in E on K for every x E En , R(Xe) = R(e) for any

c K and A > 0 , and K is a cone, then f* is positively homogene-

ous on K

Proof: Let e c K and X > 0 . Then X E K and we obtain

f*(XE) = inf f(x,Xe) = inf Xf(x,e) = f*(e) .

xeR(Xe) xeR(E)

Similar results to Propositions 2.21 - 2.23 were obtained by

Borwein (1980) for the problem

min f(x,e) P0(E)
xEEn

where f: En x Ek _ E1 V-

In accordance with the previous definitions, a function

0: Er - E1 V {-,-} is called "homogeneous convex (concave)" on a

convex cone K CE r  if it is both positively homogeneous on K and

convex (concave) on K [see, e.g., Rockafellar (1970)]. As is well

known, if 0: Er - E1  is both homogeneous convex and homogeneous concave

on a convex cone K , then 0 is linear on K . A point-to-set map

R: Ek - En  will be called "homogeneous convex" on a convex cone K C Ek

if it is both convex and positively homogeneous on K , or equivalently,

if G(R) (K x En) is a convex cone. Rockafellar (1967,1970) intro-

duced and extensively studied such maps under the name of "convex pro-

cesses" [he requires that (0,0) c G(R) A (K x En)]. He also considered

subclasses of convex processes called "monotone processes of a convex

(concave) type."

-22-
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Proposition 2.24

Consider the general parametric optimization problem P(C). If f

is jointly homogeneous convex on En x K , R is homogeneous convex on

K , and K is a convex cone, then f* is homogeneous convex on K

Proof: Follows directly from Propositions 2.2 and 2.21 taken together.0

We call 0: Er - E V {--Io} "homogeneous quasiconvex (quasicon-

cave)" on a convex cone K C Er if 0 is both positively homogeneous

and quasiconvex (quasiconcave) on K . A specialization of the above

conclusions yields the next result.

Proposition 2.25

Consider the general parametric NLP problem P3 (E). If f is

jointly homogeneous convex on M x K , {gi ) are jointly homogeneous

quasiconcave on M x k , {hi} are jointly linear on M x K , and M

and K are convex cones, then f* is homogeneous convex on K .

Proof: Follows immediately from Corollary 2.7 and Proposition 2.22. N

Further specialization to P2 (E) is straightforward.

We call R: Ek - En a "polyhedral homogeneous convex" point-to-

set map on a convex polyhedral cone K C Ek  if G(R) A (K x E n ) is a

convex polyhedral cone (i.e., a convex cone and a convex polyhedron).

This notion was introduced by Rockafellar (1967), who calls it a "poly-

hedral convex process." [He assumes that (0,0) c G(R) t) (K x En) ].

Proposition 2.26

Consider the general parametric optimization problem P(s). If

f is jointly positively homogeneous and polyhedral convex on En x K

-23 -
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R is polyhedral homogeneous. convex on K , and K is a polyhedral

convex cone, then f* is positively homogeneous and polyhedral convex

on K

Proof: Follows from Propositions 2.19 and 2.21. U

This result can also be easily specialized to the parametric

NLP problems P3 (e) and P2 (c) in a straightforward manner.

3. CONCAVITY OF THE OPTIMAL VALUE FUNCTION

Recall from Section 2 that an (extended) function 0: Er - E1 J

, is called "concave" on a convex set M C Er  if -@ is convex

on M , i.e., if for all x1,x2 e M and X e (0,1)

¢(xx 1+ (l-X)x2) > w(x l) + (1-X)(x 2).

(here the convention is that (--) + - -_ ). We call R: Ek En a

"cncave" point-to-set map on a convex set S C Ek  if, for all

Ele 2 e S and X e (0,1),

RC I + (I-A)E 2) C XR(E1 ) + (I-X)R(c2 )

This definition was given by, e.g., Tagawa (1978). [A more general

notion of a "B-concave" point-to-set map was introduced by Tanino and

Sawaragi (1979)].

Proposition 3.1

Consider the general parametric optimization problem P(e). If f

nis jointly concave on E x S , R is concave on S and S is a

convex set, then f* is concave on S.

-24-
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Proof: Let Elt,2 E S and X e (0,1) . Then by our assumptions we have

f*Cll + (1-X)E 2) inf fCx, 1 + (I-X) 2)

xCR(e1l+(l-A)E 2)

inf fCXx I + (1-X)x 2, Xe1 + (l-X)E 2)x 1 R(EI1

x2cR(e2)

inf [Xf(xl* I ) + (l-X)f(x 2,E2 )]XleR(e I

x2CR(c2)

- X inf f(xle I) + (1-4) inf f(x2C
x1 ER(C1) 

x2CR(C2)

= Xf*(e ) + (1-X)f*(c2)

(in the case when e 1 domR and e2 1 domR , XC1 + (1-)e 2 t domR and

the above inequality is still valid), i.e., f* is concave on S . U

Remark 3.2

Note that the intermediate function in the above proof given by

*()- inf f Clx I + (l-X)x 2, Xe1 + (l-4)e2)
XlI R(CI )
x 2 R(C 2)

where Cie 2 C S are fixed, is concave on [0,1] in view of Proposition

3.9 (since R(el),R(£2) are fixed and fCx I + (l-)x 2, Xe1 + (1-)e2)

is concave in A for any fixed XX 2 ]. Therefore i* is a concave

lower bound on f* on the interval (cite 2] hence a better bound than

the linear one given by £(X) - Xf*( 1 ) + (l-X)f*(c 2).

In order to strengthen the Proposition 3.1, we introduce the fol-

lowing notion, paralleling one introduced in Section 2. The point-to-set

map R: E - E is called "hull concave" on a convex set S C E if the

- 25 -
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map convR given by convR(e) convCR(c)) is concave on S , or

equivalently, if for all ,EI,2 E S and X e (0,1)

conv(R(Xe1 + (1-X)e2)) C convCR(e1 )) + (1-X)conv(R(£2))

Since the set on the right-hand side of the above inclusion is convex,

we can instead use the condition

1 + ( 2-)E2J C XconvCR(el)) + (E-XlconvCR(c2))

This shows immediately that if R is concave on a convex set S , then

it is also hull concave on S . The following simple example shows that

the converse statement is not true.

Example 3.3

Consider R: E1 - E defined by

0 , if E < 0

R(e) {0} V {1} , if £ - 0

{1/2} , if E > 0

and S - {U 0 4 £ 4 Ii . Then it is easily seen that R is hull con-

cave on S , but is not concave on S

However, if R is convex-valued on S (i.e., R(C) is convex

for each C C S ), then the notions of concavity and hull concavity on

S coincide.

Proposition 3.4

Consider the general parametric optimization problem P(e). If f

is jointly concave on En x S , R is hull concave on S ,and S is

convex, then f* is concave on S

-26-
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Proof: Define R(e) convCR(e)) for C £ S . Denote f*(c) -

inf {f(x,E) I x e R(e)} . By Proposition 3.1 f* is concave on S

since R is concave on S . We shall show that f*(£) = f*(e) for

e e S . Obviously, f*(C) ? f*(c) for C e S . Suppose that c E S

and x e R(e) . Then x - Ax + (l-X)x2  for some xl,x2 e R(C) and

X c (0,1) . By the concavity of f

f(x,C) fCkx I + (-X1x 2,C ) > Xf(xlC) + (l-)Lf(x2,C)

min{f(xle), f(x2,)} > inf f(x,e) - f*(c)
f2  xCR(£)

This shows that *(e) - inf f(x,E) ; f*(e) 
xCR ( )

Remark 3.5

The above proof basically shows that if f is concave (or quasi-

concave) in x and R(c) is an arbitrary set, then

= inf f(x,C) - inf f(x,c) - f*(e)
x~conv(R(e)) xER(e)

This also implies that if x* E S*(e) , i.e., x* is a solution

to the problem P(e), then it is also a solution to the problem

min f(x,c) s.t. x £ convCR(e)) N()
x

We also note that Remark 3.2 remains valid in this case, since for any

I, 2 £ S and X e (0,1) , we have

XconvCR(cl)) + (1-A)convC£ 2)) " convQCR(el) + (1-A)R(e2)'

and by Remark 3.5,

inf f(x, X 1 + (I-X) 2)
xcconv(XR(Cl)+(l-X)R(E2))

inf f(x, C1 + (1-A))2).xcXR(c )+(I-X)R ( 2)

-27 -
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Similar to the convex case, we define the following notions. We

call R: Ek _ En  a "weakly closure concave" point-to-set map on a convex

set S CE k  if, for all e1, 2 e S and X c (0,1) ,

RCA I + (l-X))e2) C XcZCR(el)) + (.-X)ck{R(E2))

We also call R "closure concave" on a convex set S if the map cXR

[given by ctR(e) - cCR(c))] is concave on S It follows that if R

is concave on S , then it is weakly closure concave on S , and if R(e)

is closed for all E E S , then all these three notions coincide. Also,

if R is closure concave on S , then it is weakly closure concave on

S , but not conversely (since in general the inclusion ck(A+B) C cZ(A) +

cl(B) is not true even if A and B are convex sets, unless A or B

is bounded).

Proposition 3.6

Consider the general parametric optimization problem P(e). If f

is jointly concave on En x S and upper semicontinuous in x on En

for every e E S , R is weakly closure concave or closure concave on

S and S is a convex set, then f* is concave on S

Proof: Let e1 ,C2 C S , X c (0,1) , and denote E, W XcI + (I-X)e 2

Then by our assumptions we have

f* (E) X inf f(x,cA X inf fCkXl + (l-OX)xAxcR(eXI) xleC9(R()) 

x2 cc(R(c2))

inf [Xf(x,) + (-)f(x2 )

X1 ec(R(c1 ))I x2cct(R(c 2 ))

X inf f(x1 ,O1 ) + (l-X) inf f(x2,c2 )
x1 ect(R(cI)) x2 c(R(E2 ))

- 28 -

L



T-471

In view of Remark 2.5 we obtain further that

f*(EX) X inf f(xle 1 ) + (l-X) inf f(x2 ,E2 )

x1 eR(E:) x2ER(E2 )

= Xf*(El) + (l-X)f*(E2 )

(in the case when e e domR and e i domR , the above inequality

remains valid), i.e., f* is concave on S . U

Remark 3.7

We observe that the notions of hull concavity and closure concav-

ity of R can be combined by considering the sets cRcconv(R(e)))

The analogue of Propositions 3.4 and 3.6 can be easily proven by combin-

ing these assumptions and noting that the closure of a convex set is

also a convex set.

It is rather difficult to obtain specializations of Proposition

3.1 to the problems P3 (e) and P2 (e), as was possible in the convex case.

However, the following result is an example of an application of this

proposition.

r 1
For a convex function 0: E -* E , the "subdifferential of

at x0  [see, e.g., Rockafellar (1970)] is defined as

W(x 0) {a e Er I O(x) - O(x) aT(x-x0) , V x c Er}

Any vector a e ao(x 0 ) is called a "subgradient of 0 at x0 ." It is

well known that DO(x) 0 4 for all x e Er if 4 is finite and convex

on Er and that 0(x0) -tnx{O(x) I x c Er, if and only if 0 £ ao(x 0 )

[see, e.g., Rockafellar (1970)]. Consider the problem

min f(x,z,c) s.t. g (x,c) + il(z) 0 (C)
(x,z)eMxE1
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Proposition 3.8

If f is jointly concave in (z,E) on Es x S for every x E M

91 is convex in E on S for every x C M , gl is convex on Er

and such that for all z e Es , 0 j a-1(z) , S is convex and M is

arbitrary, then f* , the optimal value function of P;(e), is concave on S

Proof: We shall prove that the feasible set map R'(e) -

{(x,z,v) I f(x,zE) 4 v, gl(x,e) + g1 (z) ) 0, x E M1 of the equivalent

problem

min v s.t. (x,zv) e R'(e) '(C)(xVz~v) P

is concave on S , and thus by Proposition 3.1 v* , the optimal value

function of P(£), will be concave on S . This will imply concavity of

f* on S , since f* - v*

Let (x,z,v) c R'(e) , where £i,£2 £ S , l eI + (I-A)£ 2 ,

A c (0,I) . Then x e M , f(xz,£e) 1 gl(X,£A) + g(Z) 0 . By

the convexity and finiteness of 91 on Er, ag(z) # . Let a c
_ _ . r  T

gl (z) Then for all z E E , g1 (z) - g1 (z) > aT (z-z) . Denote

b =g(Z) aT . Then we have, for all z e Er (z) > a Tz + b and

also gI(X,-£) + aTz + b > 0 . By convexity of g in e

A. Xg1 (x,£1 ) + (l-x)gl(x,e 2) + aT + b ; 0

Let z0 £ E
s be such that aTz0 - 0 and z - z0 + (aT;/aTa)a Such

a vector z0  exists, since a # 0 , by our assumptions. Let zi M z0 +

- T
S(A 1 -g(x,£1) - b)(a/(a a)) , for i 1,2 . Then it follows that z -

Az1 + (l-A)Z2 and for i - 1,2 , g1 (x i + gl(z) > gl(xi) + aTzi +

b A 0 . By concavity of f in (z,e)
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Let vi = f( ,zi,ci) + cX for i = 1,2 . Then v = vI + (1-X)v2 and

Vi > f(x,zi, ) , i 1,2 Thus, (x,z,v-) - X(xzlv 1 ) + (1-A)(xz 2,v2)

and, in view of the above relationships, (XZl,v1 ) e R'(e 1 ) and

(x,z2,v2) E R'(E 2) , completing the proof of the concavity of R' on

S. U

Note that the condition 0 4 3g (z) for all z e Er holds if and only

if gl does not attain a minimum on Er

The next proposition is apparently well known.

Proposition 3.9

Consider the special problem PI(e). If f is concave in E on

S for all x e M , S is convex and M is arbitrary, then f* is

concave on S

Proof: Let EE, S , A E (0,1) . By our assumptions,

f*CXE 1 + (l-X)Es - inf fox, I + (l-A)S3

xcM

> inf [Af(x,51) + (l-X)f(x,e2)]
xEM

A inf f(x,EI) + (1-A) inf f(x,c2)
xEM xeM

1 Af*(c) + (1-A)f*(£ 2)

i.e., f* is concave on S . U

The following rather special result partially extends Proposition

3.9.

* - 31-
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Proposition 3.10

Consider the general parametric optimization problem P(E). If f

is quasiconcave ia x on M for all e E S and is concave in e on

S for all x E M , S is convex and convCR()) = M for all E E S

then f* is concave on S

Proof: Define f*(E) = inf x{f(x,C) I x E M} for E e S . By Proposi-

tion 3.9, f* is concave on S . In view of Remark 3.5, ?*(E) =

infxcR(e) f(x,e) = f*(e) for e e S ; thus f* is also concave on S

Realizations of Proposition 3.9 are frequently used, in particular

when f is linear in E . For example, in linear programming, if

f(XE) = e x and M = {x ) 0 I Ax > b} for some matrix A and vector

b , then f*(c) = infx{f(x,e) ( x s M) is concave; see also Proposition

3.11. Note that Proposition 3.9 is a version of a more general state-

ment, that infieI fi is concave if {f I are concave for i E I

where I is an arbitrary index set (and also can be viewed as a corol-

lary of Proposition 3.8).

As another application of this result, consider the Wolfe dual

of P2(E) [Wolfe (1961)], with f(x,e) = f(x) (i.e., the standard rhs

parametric NLP problem),

max L(x,u,w,c) s.t. V L(x,u,w,c) 0 (E)

(xu,w) x xEM

where L is the Lagrangian function given by

m P

L(x,u,w,c) = f(x) - [ ui[gi(x) - E] + [ wj[hj(x) - I
i=1 j-l
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Denote by L*(e) the optimal value of D . Note that al-

though the Wolfe dual is usually defined under convexity assumptions on

P 2(E) ,convexity assumptions are not needed in the following result.

Proposition 3.11

For arbitrary functions f , {g ,and {h.} and an arbitrary

set M , L* is convex.

Proof: The function

L*(C) = sup L(x,u,w,E) = -inf [-L(x,u,w,E)]
(x,u,w)£RD(E) (x,u,w)eRD(C)

where RD(C) = {(x,u,w) I VxL(x,u,w,E) 0, u ) 0, x E M} . Since -L

is linear in e and RD is constant, the result follows from Proposi-

tion 3.9. U

Remark 3.12

This result can be further extended to the dual of the problem

min f(x) s.t. gi(x) > gi(E) , i = i,...,m
x P' (E)

hi(x) - h i(C) , j 1'l...,p

under the assumptions that the functions {gi } are convex and that

{h} Iare affine.

Recalling the definition in Section 2, we call a function
Er -) E1 V {-wo} "concave at x0  on a set M C Er convex at x

if for all x c M and X e (0,1)

CXX0 + (l-X)x) > xo(x 0) + (1-X)O(x)

We also call the point-to-set map R "concave at O" on a set S

convex at e0 if, for all £ £ S and X £ (0,1)
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RCXC0 + (I-X)E) CXR(E0 ) + (l-X)R(C)

Furthermore, we call R "hull concave at E 0 on a set S convex

at e 0 if the map convR is concave at C0 on S

The next two propositions parallel Propositions 3.1 (or 3.4) and

3.9.

Proposition 3.13

Consider the general parametric optimization problem P(E). If f

is jointly concave at (x, 0 ) for all x e R(C0 ) on En x S , R is

hull concave or concave at C0  on S ,and S is convex at cO , then

f* is concave at C on S.
0

Proof: Analogous to the proof of Proposition 3.1 (resp. Proposition 3.4)

if R is concave at C0  (hull concave at E0 ). 0

Proposition 3.14

Consider the special problem Pl(C). If f is concave in C at

C0  on S for any x C M , S is convex at CO, and M is arbitrary,

then f* is concave at C0  on S.

Proof: Similar to the proof of Proposition 3.9.

We now consider the notion of strict concavity. A function

0: Er - E1 V {-oc} is called "strictly concave" on a convex set

M C Er if -0 is strictly convex on M , or equivalently, if for all

xiCx E , x1 # x2  and X C (0,1)

O{Xx1 + (I-X)x2) > XO(xl) + (l-X)O(x 2 )

SA

-34 -
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Proposition 3.15

Consider the general parametric optimization problem P(C). If f

is jointly strictly concave on En x S , R is hull concave or concave

on S , S is convex, and S*(e) # for all C C S , then f* is

strictly concave on S

Proof: In view of Remark 3.5 it is enough to prove the result for R

concave. Let EVE2 C S , E1 0 E2 , and A E (0,I) Denote EA =

AC,1 + (l-A)E 2 * By our assumption there exists x* E S*(CA) and by

the concavity of R , x* = Ax1 + (l-A)x 2 for some x1 E R(e)

x2 E R(E2 ) Using strict concavity of f we obtain

f*(CA) = f(x*,EA) = f(Xx I + (l-X)x 2 ,EX)

> Af(xl,E) + (l-A)f(x 2,E2)

A inf f(x,E) + (1-A) inf f(x,C2)

xeR(E )  
xER(C2 )

= Xf*(C 1) + (1-X)f*(e2) ,

i.e., f* is strictly concave on S .

In order to obtain the next result we introduce the following

notion. We call a point-to-set map R: E k En  strictly concave" on

a convex set SCE k  if for any EVE 2 E S , C1  E C2 , and A e (0,1)

and x e RCAC1 + (l-X)C 2) there exist x, e R(eI ) and x2 C R(E 2 )

such that x1 0 x2 and x - Ax1 + (l-A)x 2 . It is clear that if R is

strictly concave on S , then it is concave on S . However, if R is

concave on S it need not be strictly concave on S . For example, if

R() w M for e C S , where M is arbitrary, then R is concave on

S , but it is strictly concave on S only if M does not have any
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extreme points [ x0 E M is called an "extreme point of M ' if x0 -

Ax1 + (1-A)x2  for some xl,x 2 C M and X E (0,1) implies that x I =

x2 ]. Also, we call R "strictly hull concave" on a convex set S if

the map convR is strictly concave on S

Proposition 3.16

Consider the parametric optimization problem P'(E). If f

is strictly concave on En, R is strictly hull concave or strictly

concave on S , S is convex, and S*(e) # for all e E S , then

f* is strictly concave on S

Proof: By Remark 3.5 if is enough to give the proof for the case

when R is strictly concave. Let l,c2 E S 1  , E (0,1)

and FX = Ac1 + (I-X)c 2 . By our assumptions, there exists x* E- S*(E

and, by strict concavity of R , x* - xI + (l-X)x 2  for some x1 E

R(E1) , x2 E R(e2) , x1 # x2 . Using strict concavity of f we have

f*(E) = f(x*) = f(Ax1 + (l-X)x 2 ) > f(x 1 ) + (i-A)f(x 2 )

A inf f(x) + (1-A) inf f(x) = Af*(c 1 ) + (l-)f*(e2)
xCR(E1 ) xER(E2)

i.e., f* is strictly concave on S . U

For the special problem P1 (e) we obtain the following result.

Proposition 3.17

Consider the problem P1 (c). If f is strictly concave in e on

S for all x e M , S is convex, M is arbitrary, and S*(c) $

for all e E S , then f* is strictly concave on S

Proof: Let el, 2  C S , el # C2 1 X C (0,1) ,and c =A X 1 + (l-%)£ 2

By the assumptions there exists x* £ S*(A) . Using strict concavity
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of f we obtain

f*(Ex) - f(x*,E1) > Xf(x*,e I) + (l-)f(x*,c2)

X A inf f(x, 1 ) + (1-X) inf f(x,2) = Xf*(E1) + (l-)f*(e 2)
xEM xeM

i.e., f* is strictly concave on S . U

As a counterpart to the notion of uniform convexity considered

in Section 2, we consider the notion of uniform concavity. We call

$: Er - E1 V {o,-} "uniformly concave with d(.) " on a convex set

M C Er if -$ is uniformly convex with d(') on M , i.e., if for

all xl,x 2 £ M and A £ (0,I)

OC{x + (l-X)x + (l-A)O(x 2 ) + A(1-)d(llx-X 2 11)

where d: [0,-) [0,-) is an increasing function with d(t) > 0 for

t > 0 and d(0) = 0 , and 11-11 is an arbitrary norm in Er

Proposition 3.18

Consider the general parametric optimization problem P(c). If f

is jointly uniformly concave with d(.) on En x S , R is hull con-

cave or concave on S , and S is a convex set, then f* is uniformly

concave with d(') on S

Proof: In view of Remark 3.5, we prove the result only for R concave.

Let £i,£2 e S and A e (0,1) . By our assumptions and the properties

of the function d and the norm, we have

f*CA 1 + (I-A)£2  - inf fCx, XA1 + (I-XA) 2)
x£R(X 1+(I-X)c 2)

inf fCXx1 + (l-X)x 2 , XcI + (l-A)c2)Xl1 R(cI )
t x2CR(E2)

- 37-
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inf [f(xlc I) + (l-X)f(x2,e2)

x1ER(e1 )

x 2SR(E 2 ) + X(l-X)dC (x I ,e 1 )-(x 2VE 2 ) I)]

inf [Xf(xl,e1 ) + (l-X)f(x 2,E2)

X1ER( 1 )

x2eR(e 2) + X(1-X)d(l(xl-x 2, E1 -e 2 )I11)

> inf [Xf(xl,$1) + (1-X)f(x2 , 2 )]
xIER(E 1 )

x 2 ER(e 2 ) + X(1-X)d(IIEI-E 211)

= A inf f(x,sI) + (1-X) inf f(x 2,2)
Xl-R(FI )  x 2 R(E 2 )

+ A(l-A)d(jj151-E211)

= f*(e1) + (l-)f*(s2) + X(l-X)d(jIjcl-E 2 11)

(if E1 £ domR and E2 domR the inequality above remains valid),

i.e., f* is uniformly concave with d(') on S . U

Note that for the parametric optimization problem P'(e), this result

reduces to the previous one in Proposition 3.1, namely, the concavity

of f* . Also, see the remarks following Proposition 2.17 concerning

uniform convexity, since they are applicable in this case as well.

Proposition 3.19

Consider the special problem PI(e). If f is uniformly concave

in e with d(.) on S for all x e M , S is convex and M is

arbitrary, then f* is uniformly concave with d(.) on S

Proof: Let EVE£2 C S , A E (0,I) . By our assumptions,
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f*Cx 1 + (l-X)c) - inf fCx, AE1 + (1-X) 2)
xEM

inf [Xf(x,e1 ) + (l-X)f(x,c 2) + X(l-X)d(Ie1 -211)]
xEM

X inf f(x,cI) + (1-X) inf f(x,e2)
xeM xEM

+ X(l-X)d(e 1-C 211)
U Xf*(e1) + (l-X)f*(c2) + X(l-X)d(Ie1 -C211) ,

i.e., f* is uniformly concave with d(.) on S .

Finally, we consider the notion of homogeneous concavity intro-

duced in Section 2. Recall that 0: Er ) E1 V {-,-I is called "homo-

geneous concave" on a convex cone K C Er if it is both positively

homogeneous on K , i.e., O(Xx) - X4(x) for all x E K and X > 0

k _,nand concave on K Analogously, a point-to-set map R: E - E will

be called "homogeneous concave" on a convex cone K CE k  if it is both

concave and positively homogeneous on K . (See Section 2 for the latter

notion.) Recently Ioffe (1979) introduced the notion of a "fan,"

which in our terminology is a convex-valued homogeneous concave point-

to-set map (in a finite-dimensional space he slightly modified this

definition). We additionally define R to be a "homogeneous hull

concave" point-to-set map on a convex cone K CE k  if it is both hull

concave and positively homogeneous on K

Proposition 3.20

Consider the general parametric optimization problem P(c). If f

is jointly homogeneous concave on En x K , R is homogeneous hull

concave or homogeneous concave on K , and K is a convex cone, then

f* is homogeneous concave on K

-39-
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Proof: Follows directly from Propositions 3.1 (or 3.4) and 2.21 taken

together.

Proposition 3.21

Consider the special problem P1 (e). If f is homogeneous concave

in E on K for all x e M , K is a convex cone and M is arbitrary,

then f* is homogeneous concave on K

Proof: Follows immediately from Propositions 3.9 and 2.23. U

4. AFFINENESS OF THE OPTIMAL VALUE FUNCTION AND
CONVEXITY PROPERTIES OF THE SOLUTION SET MAP

We shall consider here the solution set map S*: E k En  for the

general parametric problem P(e) given by

S*(E) = {x e R(C) I f(x,e) < f*(E)}

The following result is well known.

Proposition 4.1

Consider the general parametric optimization problem P(e). If f

is quasiconvex in x for all e e S , R is convex-valued on S (i.e.,

R(E) is convex for any e e S ), and S is an arbitrary set, then S*

is convex-valued on S

Proof: Let e e S . Then R() is convex and the set {x j f(x,c) 4

f*(C)} is convex by quasiconvexity of f in x , so S*(c) is also

convex.

A function *: E r - E is called "affine" on a convex set M CEr

if, for all xlx 2 C M and X c (0,1) ,

OCXX 1+ (1-X)x2) - Xo(x l ) + (1-X)(x 2).
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Thus * is affine on M if it is finite and both convex and concave

on M We call R: Ek - En  an "affine" point-to-set map on a convex

set S C Ek  if R is both convex and concave on S , i.e., if for all

C1, 2 e S and X E (0,1)

XR(EI) + (1-A)R(c2) = R(A51 + (l-X)e2 •

This notion was introduced and utilized by Tagawa (1978).

Note also that R is affine on S if and only if R is both

convex and hull concave on S . We can slightly extend this defini-
J: tin an cal R: k n E

tion and call R: E " E essentially affine" on a convex set S C

if it is both essentially convex and concave on S , i.e., if for all

1i, 2 E S , E 1  2 , and X c (0,1)

AR(s1) + (l-X)R(E2) = R(CX 1 + (1-X)2

Recently Penot (1982) also introduced this notion, calling such R an

"affine" point-to-set map. It is clear that if R is affine on a con-

vex set S , then it is essentially affine on S . The converse state-

ment is not true, similar to the case of essential convexity of R

We also introduce the following notions. The point-to-set map R:

Ek En
E E 13 called "hull affine" ("essentially hull affine") on a convex

set S CE k  if the map convR given by convR(e) - convCR(c))  is

affine (essentially affine) on S , or equivalently if, for all cl,2 C

S (C1  ) and X e (0,1)

AconvCR(EI)) + (1-X)convCR(c2)) convCR(X 1 + (1-X) 2))

An affine map R is also hull affine, i.e., both hull convex and hull

concave. An example of a map that is hull affine but not affine is

provided by the "constant" map R given by R(e) - M , c c S , where

S is convex and M is arbitrary, and not convex.

-41-
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The following result shows that affineness of the map S* is

generally possible only under strong assumptions on f and R , assump-

tions which also imply that f* is affine, if it is finite.

Proposition 4.2

Consider the general parametric optimization problem P(E). If f

is jointly affine on En x S , R is (essentially) affine on S , and

S C domR is convex, then f* is both convex and concave on S and S*

is an (essentially) affine point-to-set map on S . If R is only

(essentially) hull affine on S , then f* is both convex and concave

on S

Proof: Convexity and concavity of f* on S follows directly from

Propositions 2.2 and 3.1 in the first case and from Propositions 2.10

and 3.4 in the second case. Now, for EVE2 E S , E (0,I) , denote

e- X + (l-X)c 2  and let x* C S*( I) , x* C S*(E2) ,i.e.,

x* E R(£I) , x* e R(E2 ) with f(x*,E1 1 c f*(e I ) , f(x,e 2 ) f*(

By convexity of R , Xx* + (I-X)x* E R(E Also, by convexity of f
1 2 cR£ lo ycneiyo

and concavity of f*

fC~x* + E.) < Xf( l) + (1-X)f(x*'E2

< Xf*(E ) + (1-X)f*(e2 ) f*(

i.e., S* is convex on S • Assuming that e1 0 C2 we would only

obtain that S* is essentially convex on S . To prove concavity of

S* on S , let x* e S*(£x) . Then x* e R(cX) and, by concavity of

R , x* - Xx1 + (l-X)x2  for some x1 e R(e1 ) , x2 E R(c2) If either

x S*(El) or x2 £ S*(c 2) , then by concavity of f

4 - 42-
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f*(e ;0 f(x*,Ek) - fCxx1 + (1-X)x 2, cX)

Xf(xloe) + (l-X)f(x 2,e2) > Xf*(cl) + (1-X)f*(e 2)

contradicting convexity of f* . Thus, x 1 S*( I ) and x2 C S*(e2)

with x* - Xx1 + (I-X)x2 , completing the proof. U

Remark 4.3

Note that convexity of S* follows under assumptions that

f and R are convex and f* is concave, but this is possible essen-

tially only if both f and R are affine.

Corollary 4.4

Consider the general parametric optimization problem P(E). If f

n
is jointly affine on E x S , R is polyhedral convex and affine on S

and S C domR is a convex polyhedron, then f* is both polyhedral convex

and concave on S and S* is polyhedral convex and affine on S

Proof: In view of Propositions 2.19 and 4.2, we need only prove that

S* is polyhedral convex on S , i.e., that G(S*) 1) (S x E n ) is a

convex polyhedron. Note that

G(S*) 1) (S x E n ) - G(R) n (S x E n ) 1) {(E,x) I f(x,c) < f*(E)}

Since R is polyhedral convex on S , f is affine on S and f* is

both convex and concave on S , both sets G(R) A (S x E n ) and

{(e,x) I f(x,e) < f*(c)} are convex polyhedra, hence so is the set

G(S*) () (S x En) ,thus proving the result. U

Note that if f* is finite in Corollary 4.4, then it is affine.

Note also that if R is affine on a convex polyhedron S , then in

general R is not polyhedral convex on S . For instance, if R(c) - M
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e £ S , S is a convex polyhedron, and M is a convex set but not a

convex polyhedron, then R is affine on S but G(R) A (S x En) is

not a convex polyhedron.

The following generalization of the notion of a polyhedral convex

point-to-set map R was introduced by Robinson (1981). A point-to-set

k nmap R: E - E is called "polyhedral" if G(R) is a union of finitely

many convex polyhedra. Consider a convex quadratic programming problem
1 TT

min - xTCx + Cix  s.t. Ax > E x > 0 QP(E)

x£En 2 1 2'

where C is a positive semidefinite n x n matrix, A is an arbitrary

m x n matrix, and £ = (Ei,£ 2)T c E is the parameter vector. Robin-

son (1981) proves that the solution set map S* for QP(E) is polyhedral.

Combining the notions of closure convexity and closure concavity

we call R: Ek - En a "closure affine" point-to-set map on a convex

set S C Ek  if the map ckR is affine on S

Proposition 4.5

Consider the general parametric optimization problem P(£). If

f is jointly affine on En x S and upper semicontinuous in x on the

set cZCR(s)) for every £ C S , R is closure affine on S and

S C domR is convex, then f* is both convex and concave on S

Proof Follows directly from Proposition 4.2 and Remark 2.5 taken

together.

4Affineness of S* does not seem to follow from the above assump-

tions, since in general the inclusion S*(E) CS*(c) - {x £ cZR(c)) I

f(x,e) ( ?*(E)} , £ e S , is strict (this inclusion is a consequence of

Remark 2.5).
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Recall from Section 2 that we call 0: Er E1  "affine at x0

on a set M C Er convex at x0  if for all x e M and A e (0,1)

C~x 0 + (l-AW)x) (x0 ) + (l-AW)(x) .

Generalizing the notion of affineness for point-to-set maps, we call R

"affine at o ," on a set S convex at E0 9 if R is both convex at

e0 and concave at £0 on S , i.e., if for all E E S and X e (0,1)

AR(E 0 ) + (1-X)R(£) - R(c 0 + (1-X)CJ

k n ,iWe shall call R: E E essentially affine at c" on a set

S convex at c0 9 if the above equality holds for all e e S , e 0 0

and A c (0,I) . This notion was also recently introduced and utilized

by Penot (1982), who calls such R a "semi-affine" point-to-set map.

Clearly, if R is affine at £0 on S , then it is essentially affine

at £0 on S , but not vice versa (the set R(£0) need not be convex

if R is essentially affine at e

Proposition 4.6

Consider the general parametric optimization problem P(e). If f

is jointly affine at (x,£0) for all x E R( 0 ) on En x S , R is

* (essentially) affine at e on S , and S CdomR is convex at c0 1 then

f* is both convex and concave at e0 on S and S* is (essentially)

affine at e0 on S

Proof: Convexity and concavity of f* on S follows directly from

Propositions 2.11 and 3.13, respectively. The proof of (essential)

affineness of S* at co parallels the proof of Proposition 4.2. U
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We call R: Ek - En a "homogeneous affine" point-to-set map on

a convex cone K C Ek  if it is both affine and positively homogeneous

on K [Rockafellar (1967) calls such a map "quasi-linear"]. Note that

a homogeneous affine map is both homogeneous convex and affine. The

following examples show that these latter notions are distinct. Let

R1: E1  E1  be defined by RI(E) - {x 1 0 4 x 4 1} for all c e E

1 1
Then R is affine on E but not homogeneous convex on E . Let

R2: E1 -E 1 be given by R2 (e) = {x x > !EI} for all e E E

1 1
Then R2 is homogeneous convex on E but not affine on E . We now

give a result involving these notions.

Proposition 4.7

Consider the general parametric optimization problem P(E). If f

is jointly linear on En x K , R is homogeneous affine on K , and

S C domR is a convex cone, then f* is both homogeneous convex and homo-

geneous concave on K and S* is a homogeneous affine point-to-set

map on K

Proof: Homogeneous convexity and concavity of f* follows from Propo-

sitions 2.21 and 4.2. Affineness of S* follows from Proposition 4.2.

To prove that S* is positively homogeneous, let e e K , x c S*(E) ,

X> 0 . Since Xx e R*(Xc) and f(Xx,XFe) - Xf(x,e) < Xf*(E) - f*(E) ,

it follows that Xx e S*(c) .

Note that in the above result f* will be linear on K if it is

finite on K , since a homogeneous and affine function is linear.

The following notion was introduced by Berge (1963) [see also

Crouzeix (1973)]. A point-to-set map R: Ek * En is called "linear" on
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a linear subspace V C Ek  if G(R) A (V x E n ) is a linear subspace, or

equivalently if, for all EIe 2 E V and X,U # 0

XR(eI) + =R(e2  R(XI + U2 )

It is immediately seen that if R is linear on a linear subspace V

then it is homogeneous affine on V . The following example shows that

the converse is not true.

Example 4.8

Consider R: E 1 E1 given by R(E) = {x I x < e} . Then it is

1
easy to check that R is affine on E . But G(R) is a half-space in

2 1
E and not a linear subspace, so R is not linear on E

Proposition 4.9

Consider the general parametric optimization problem P(e). If f

is jointly linear on En x V , R is linear on V , and V C domR is a

linear subspace, then f* if both homogeneous convex and concave on V

If, in addition, f* is finite on V , then f* is linear on V and

S* is a linear point-to-set map on V

Proof: The first part of the result and homogeneous affineness of S*

follow directly from Proposition 4.7. Concerning the second part, we

thus need only prove that S*(-E) C-S*(C) . Let x* E S*(-E) , C £ V

i.e., f(x*,-c) - f*(-c) . Then by linearity f(-x*,C) - f*(E) , i.e.,

-x* E S*() . M
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5. CONCLUDING REMARKS

In this section we would like to summarize briefly the develop-

ments given in the preceding sections. In Section 2 we provide suffi-

cient conditions for various (standard) convexity properties of the

optimal value function f* . The notion of convexity of R and the

basic result in Proposition 2.2 (for R convex) are well known. We

slightly extend the definition of convexity by introducing essential

convexity and closure convexity and generalize this basic result in

Propositions 2.2 and 2.4. Proposition 2.6 gives general sufficient

conditions for convexity of R for the parametric NLP problem P3 (E)

which enables us to generalize the result of Mangasarian and Rosen

(1964) (Corollary 2.7) and forms the basis for applications of most other

results to P3 (e). Specialization of this proposition to the grhs NLP

problem P2 (E) is standard. A partial extension of Proposition 2.2 (see

Proposition 2.10) is obtained using a new notion of hull convexity of

R . We introduce the notion of convexity at a point for R and obtain

another extension of the basic result in Propositions 2.11 and 2.12.

Results concerning strict convexity of f* (Propositions 2.13 - 2.15)

and uniform convexity of f* (Proposition 2.17) appear to be new.

Similar results on polyhedral convexity (Propositions 2.19 - 2.20) and

positive homogeneity (Propositions 2.21 - 2.23) were obtained previously

in a different setting by Rockafellar (1970) and Borwein (1980), re-

spectively. Results on homogeneous convexity (Propositions 2.24 - 2.25)

were obtained earlier in more special cases.

Concavity properties of f* are considered in Section 3. Unlike

in Section 2, virtually all the results in this section (except for

- 48 -
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Proposition 3.9) appear to be new at this level of generality. The

notion of concavity of R , although known, has not been widely used and

the basic result in Proposition 3.1 seems to be new in the literature.

By introducing the notion of hull concavity of R we are able to fur-

ther extend this basic result in Proposition 3.4. Similar to the con-

vex case, the notions of closure concavity and weak closure concavity

allow for a slight extension of Proposition 3.1 (see Proposition 3.6).

It is difficult, however, to specialize these results to the parametric

NLP problem P3 (e) and grhs NLP problem P2 (C). One such application is

given in Proposition 3.8. Undoubtedly, other results of that type would

be of interest. Proposition 3.9 is a special result which is apparently

well known. Proposition 3.10 is closely related and appears to be new.

An interesting novel application of Proposition 3.9 is given in Proposi-

tion 3.11.

Introduction of the notion of concavity and hull concavity at

a point for R leads to an extension of basic Propositions 3.1 and

3.4 (Proposition 3.13). Proposition 3.9 can be similarly extended (see

Proposition 3.14). Results on strict concavity (Propositions 3.15 -

3.17) and the notion of strict concavity of R appear to be new, as do the

results on uniform concavity (Propositions 3.18 - 3.19) and homogeneous

concavity (Propositions 3.20 - 3.21).

Section 4 contains results concerning both the optimal value

* function f* and the solution set map S* . Proposition 4.2 is the

4basic result of this section and appears to be new. It demonstrates

the surprising fact that essentially the same conditions which imply

convexity of S* as a point-to-set map also imply concavity, and hence,
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affineness of S* Affineness of f* (in the case when f* is finite)

easily follows from the basic results of Sections 2 and 3 and their

extended versions in the case of a hull affine point-to-set map R

Strengthening the assumptions of Proposition 4.2 gives a stronger result

in Corollary 4.4. By introducing the notion of a closure affine map R

we obtain affineness of f* (for finite f* ) under slightly different

assumptions in Proposition 4.5. Extension of Proposition 4.2 is ob-

tained using the notion of a point-to-set map affine at a point (see

Proposition 4.6). Finally, two results are obtained giving sufficient

conditions for linearity of f* and homogeneous affineness or linearity

of S* (Propositions 4.7 and 4.9).

5
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